

Chris Gnau, Bureau of Water Watershed Planning Section

12th Annual Kansas Hydrology Seminar

November 21, 2003

3 Parts of a Water Quality Standard

- Designated Use
- Criteria

Anti-degradation

303(d) List - Background

- Surface Water Register
- Uses assigned to waters on Register (Designated Uses)
- Accompanying these Uses are Criteria (Numbers)
- Streams are monitored over time (Sampling)

Registered Waters and Monitoring Sites

Contributing Areas to Monitoring Sites

303(d) Background (Continued)

- From these samples, we assess waters for impairment to their designated uses via criteria
- If impairment is determined, waters are placed on list of impaired waters - 303(d) List
- TMDLs are developed for 303(d) Listed waters

Previously Used Impairment Determination Method

- > 10% of samples exceed criterion
 - = impairment (Raw Score Method)

SITE A		
Sample #	Result	
1	600	
2	10	
3	9000	
4	2200	
5	200	
6	1500	
7	10	
8	700	
9	10	

SITE B		
Sample #	Result	
1	400	
2	225	
3	11000	
4	900	
5	350	
6	550	
7	825	
8	750	
9	650	
10	10	
11	9900	
12	200	

SITE C			
Sample #	Result		
1	100		
2	300		
3	2600		
4	10		
5	800		
6	2200		
7	425		
8	3500		
9	700		
10	1100		
11	10		
12	250		

TMDLs are written for 303(d) listed waters

- TMDLs can be expensive to develop and even more expensive to implement.
- It is important that the list be comprised of those waters that are truly water quality limited.

Assessment Errors

- Assessment runs the risk of two kinds of errors
 - 1. An assessment that lists unimpaired waters (type I error)
 - 2. An assessment that fails to list impaired waters (type II error)

Problem with Raw Score Method

- Based on the observed percentage of the distribution that exceeds a criterion
- For smaller sample sizes has high type I error (listing of unimpaired waters)

New Assessment Approach

- Binomial Method
- Based on an estimate of the true percentage of the distribution that exceeds the criterion
- Type I error rate is chosen as a matter of policy

Binomial Method

- Assessment guidelines = not more than 10% of samples exceed criterion
- Statistically the same as comparing the upper 90th percentile of the distribution to the criterion
- Never know the true 90th percentile with a finite number of samples with absolute certainty
- Confidence intervals can be used which allow us to capture uncertainty in our estimate on a percentile of the distribution

Cumulative Binomial Distribution

Using
$$Bin(x;m,p) = \sum_{i=0}^{x} {m \choose i} p^{i} (1-p)^{m-i}$$
 where
$${m \choose i} = \frac{m!}{i!(m-i)!}$$

 $m! = m(m-1)(m-2)\cdots 1$

and

$$\binom{12}{12}0.9^{12}(0.1)^0 = 0.282$$

$$\binom{12}{11}0.9^{11}(0.1)^1 = 0.377$$

$$\binom{12}{10}0.9^{10}(0.1)^2 = 0.230$$

From this, the minimum number of successes out of 12 trials to keep a water body off an impaired list is 10 (or, conversely, 2 failures out of 12 trials). This is the same as saying that 3 failures out of 12 trials will get a water body listed as impaired.

MS Excel function: BINOMDIST

Binomial Assessment Results

 To list a water body as impaired with as close to 90% confidence as possible

Sample Size <i>m</i>	Crit. # Exceed	Confid Level
12	3	0.889
13	3	0.866
14	3	0.842
15	4	0.944
16	4	0.932
17	4	0.917
18	4	0.902
19	4	0.885
20	4	0.867
21	5	0.948
22	5	0.938
23	5	0.927
24	5	0.915
25	5	0.902

Raw Score v. Binomial Method

SITE A		
Sample #	Result	
1	600	
2	10	
3	9000	
4	2200	
5	200	
6	1500	
7	10	
8	700	
9	10	

SITE B		
Sample #	Result	
1	400	
2	225	
3	11000	
4	900	
5	350	
6	550	
7	825	
8	750	
9	650	
10	10	
11	9900	
12	200	

SITE C		
Sample #	Result	
1	100	
2	300	
3	2600	
4	10	
5	800	
6	2200	
7	425	
8	3500	
9	700	
10	1100	
11	10	
12	250	

Sample Size	Crit.#	Confid Level
8	3	0.962
9	3	0.947
10	3	0.930
11	3	0.910
12	3	0.889
13	3	0.866
14	3	0.842
15	4	0.944
16	4	0.932

Binomial Method: Balancing Type I and II Errors

- Type I error is set
- Type II error Balances
 - Alpha for Type I error is 0.1 (not 0.05)
 - Minimum Sample Size Requirements
 - Historical Trend Check

Binomial Method with Additional Checks

SITE A		
Sample #	Result	
1	600	
2	10	
3	9000	
4	2200	
5	200	
6	1500	
7	10	
8	700	
9	10	

SITE B		
Sample #	Result	
1	400	
2	225	
3	11000	
4	900	
5	350	
6	550	
7	825	
8	750	
9	650	
10	10	
11	9900	
12	200	

SITE C		
Sample #	Result	
1	100	
2	300	
3	2600	
4	10	
5	800	
6	2200	
7	425	
8	3500	
9	700	
10	1100	
11	10	
12	250	

Sample Size	Crit.#	Confid Level
12	3	0.889
13	3	0.866
14	3	0.842
15	4	0.944
16	4	0.932
17	4	0.917

Parametric Method: Establishes Priority for TMDL Development

- Binomial Method does not take into account the magnitude of the excursions from the assessment criteria
- Once impairment is determined by Binomial Method, a Parametric Confidence Interval Method is applied to create a hierarchy for TMDL development

Parametric

Normally Distributed Sample Data

$$LCL_{1-a,p} = \overline{x} + K_{a,p}s$$

where
$$\overline{x} = \sum_{i=1}^{m} \frac{x_i}{m}$$
 and $s = \sqrt{\sum_{i=1}^{m} \frac{(x_i - \overline{x})^2}{m-1}}$

and $K_{",p}$ is the one-sided normal tolerance limit factor for (")100% confidence and p(100)% coverage

Lognormally Distributed Sample Data

the same method as described for normal data applies with exponentiation of the resulting limit.

$$LCL_{1-a, p} = \exp[\overline{y} + K_{a, p} s_y]$$

Adjustments for Censored Data

$$\overline{x} = \left(1 - \frac{m_0}{m}\right) \overline{x}'$$

$$s = \sqrt{\left(1 - \frac{m_0}{m}\right)(s') + \frac{m_0}{m}\left(1 - \frac{m_0 - 1}{m - 1}\right)(\bar{x}')^2}$$

Parametric Method

- Check for normally distributed data
- Transform data Natural Log

SITE A		
Sample #	Result	LN (Result)
1	600	6.397
2	10	2.303
3	9000	9.105
4	2200	7.696
5	200	5.298
6	1500	7.313
7	10	2.303
8	700	6.551
9	10	2.303
Ryan- Joiner		
p-value	<0.01	>0.1
	LN Distrbn	EXP
Avg	5.47	
StDev	2.59	
LCL(90%)	7.25	1411

SITE B			
Sample #	Result	LN (Result)	
1	400	5.991	
2	225	5.416	
3	11000	9.306	
4	900	6.802	
5	350	5.858	
6	550	6.310	
7	825	6.715	
8	750	6.620	
9	650	6.477	
10	10	2.303	
11	9900	9.200	
12	200	5.298	
p-value	< 0.01	0.0639	
	LN Distrbn	EXP	
Avg	6.36		
StDev	1.81		
LCL(90%)	7.92	2751	

SITE C				
Result	LN (Result)			
100	4.605			
300	5.704			
2600	7.863			
10	2.303			
800	6.685			
2200	7.696			
425	6.052			
3500	8.161			
700	6.551			
1100	7.003			
10	2.303			
250	5.521			
0.0403	>0.1			
LN Distrbn	EXP			
5.87				
1.96				
7.56	1922			
	Result 100 300 2600 10 800 2200 425 3500 700 1100 250 0.0403 LN Distrbn 5.87 1.96			

Conclusions

- Binomial approach used in determining whether impairments exist reduces the type I errors associated with previous assessment methods.
- Type II errors are reduced by a series of safeguard checks to ensure borderline, yet significant impairments are identified.
- Once listed, a Parametric Method (LCL _{0.9,0.9}) can be used to establish priority for TMDLs.

KDHE 303(d) and TMDL Web Sites

- 2004 303(d) Methodology and List
 - www.kdhe.state.ks.us/tmdl/basic.htm
- Kansas TMDLs
 - www.kdhe.state.ks.us/tmdl